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PASCAL07 Challenge

‘Difficult’ objects aren’t scored, but ‘truncated’ ones are



Preview of results



The rat race for medals

•Out of 20 classes, we currently get 10 golds & 6 
silvers 

•New Oxford/MSR results very impressive, but 
we still win on some categories (person)

•Fast matlab code (2 sec/image) available online
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Our rank 3 1 2 1 1 2 2 4 1 1 1 4 2 2 1 1 2 1 4 1
Our score .180 .411 .092 .098 .249 .349 .396 .110 .155 .165 .110 .062 .301 .337 .267 .140 .141 .156 .206 .336
Darmstadt .301

INRIA Normal .092 .246 .012 .002 .068 .197 .265 .018 .097 .039 .017 .016 .225 .153 .121 .093 .002 .102 .157 .242
INRIA Plus .136 .287 .041 .025 .077 .279 .294 .132 .106 .127 .067 .071 .335 .249 .092 .072 .011 .092 .242 .275

IRISA .281 .318 .026 .097 .119 .289 .227 .221 .175 .253
MPI Center .060 .110 .028 .031 .000 .164 .172 .208 .002 .044 .049 .141 .198 .170 .091 .004 .091 .034 .237 .051

MPI ESSOL .152 .157 .098 .016 .001 .186 .120 .240 .007 .061 .098 .162 .034 .208 .117 .002 .046 .147 .110 .054
Oxford .262 .409 .393 .432 .375 .334

TKK .186 .078 .043 .072 .002 .116 .184 .050 .028 .100 .086 .126 .186 .135 .061 .019 .036 .058 .067 .090

Table 1. PASCAL VOC 2007 results. Average precision scores of our system and the systems that entered the competition [7]. An empty
box indicates that a method was not tested in the corresponding class. The best score in each class is shown in bold. Our current system
ranks first in 10 out of 20 classes. A preliminary version of our system ranked first in 6 classes in the official competition.

figures/models.pdf

Figure 4. Some models learned from the PASCAL VOC 2007 dataset. We show the total energy in each orientation for the HOG cells of
the root and part filters, with the part filters placed at the center of the allowable displacements. We also show the spatial model for each
part, where bright values represent “cheap” placements, and dark values represent “expensive” placements.

PASCAL 2006 was .16 AP, obtained using a rigid template
model for HOG features [5]. The best current result of .19
adds a segmentation-based verification step [20]. Figure 6
summarizes the performance of several models we trained.
Our root-only model is equivalent to [5], and but our im-
plementation scores slightly higher at .18 AP. Performance
jumps to .24 when the model is trained with a LSVM that
selects a latent position and scale for each positive exam-
ple. This suggests LSVMs are useful even for rigid tem-
plates because they allow for self-adjustment of the detec-
tion window for the training examples. Adding deformable
parts increases performance to .34 AP — a factor of two
above previous results. Finally, we trained a model with
parts but no root filter and obtained .29 AP. This shows the

advantage of using a multiscale representation.

We also investigated the effect of the spatial model and
allowable deformations on the 2006 person dataset. Recall
that si is the allowable displacement of a part, measured
in HOG cells. One can create a rigid model with parts by
setting si to 0. This multiscale model outperforms the root-
only system by .27 to .24. By increasing the amount of
allowable displacements without using a deformation cost,
we start to approach a bag-of-features. Performance peaks
at si = 1, suggesting it is useful to constrain the part dis-
placements. The best strategy allows for larger displace-
ments while using an explicit deformation cost. The fol-
lowing table shows AP as a function of freely allowable de-
formation in the first three columns. The last column gives
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Model overview

-Model consists of root filter plus 
deformable parts

-Training data consists of bounding boxes
(part structure learned automatically)



Rich related work

Fischler & Elschlager 73, Burl et al 98, Ioffe & Forsyth 01,  
Mohan et al 01, Belongie et al 02, Fergus et al 03, Felzenszwalb 
& Huttenlocher 05, Crandall et al 05, Berg et al 05,  Liebe et al 
05,  Sudderth et al 05,  Amit & Trouve 07....

Our flavor:
Dense window scanning (no feature detection)

Multiscale histogram-of-gradient features
Discriminative (SVM) training with weakly-labeled data



Image features - 
histograms of gradients 

•Our implementation of DalalTriggs HOG features

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)

Histogram of Gradient (HOG) Features

• Image is partitioned into 8x8 pixel blocks

• In each block we compute a histogram of gradient orientations

- Invariant to changes in lighting, small deformations, etc.

• We compute features at different resolutions (pyramid)



Learned model
fw(x) = w · Φ(x)Training

• Training data consists of images with labeled bounding boxes

• Need to learn the model structure, filters and deformation costs

Training

positive
weights

negative
weights



What do negative weights mean?

(w+ - w-)x > 0
w+ > w-x

Complete system should compete pedestrian/pillar/doorway models

Discriminative models come equipped with own bg

(avoid firing on doorways by penalizing vertical edges)

>

wx > 0

pedestrian 
model

pedestrian 
background
model



Multi-scale star model

root filter
8x8

resolution

part filters
4x4

resolution

discrete
spatial model



Multi-scale star model

root filter
8x8

resolution

part filters
4x4

resolution

bounded 
quadratic

spatial model



‘Cleaner’ multiscale

Image pyramid HOG feature pyramid

Image pyramid Pyramid of 8x8 HOG cells

Part filters are not 4x4, but 8x8 at a finer image resolution









Some stats
•We use 1.05 scaling between pyramid levels 

•Training time: 3-4 hours per class using 1 cpu, 
including learning part models automatically

•Testing time: 2 seconds per image per model

Image pyramid HOG feature pyramid

1.05









3 ‘wheels’?
We need 3D 
representations

non-gaussian 
shape models







Formal model

z = vector of part offsets

= concatenation of HOG features & part offsets

fw(x) = max
z

w · Φ(x, z)fw(x) = w · Φ(x)

w = concatenation of filters & deformation parameters
Φ(x, z)



Linear vs convex models

Using Segmentation to Verify Object Hypotheses

Deva Ramanan
Toyota Technological Institute at Chicago

Chicago, IL 60637
ramanan@tti-c.org

Abstract

We present an approach for object recognition that com-
bines detection and segmentation within a efficient hypoth-
esize/test framework. Scanning-window template classifiers
are the current state-of-the-art for many object classes such
as faces, cars, and pedestrians. Such approaches, though
quite successful, can be hindered by their lack of explicit
encoding of object shape/structure – one might, for exam-
ple, find faces in trees.

We adopt the following strategy; we first use these sys-
tems as attention mechanisms, generating many possible
object locations by tuning them for low missed-detections
and high false-positives. At each hypothesized detection, we
compute a local figure-ground segmentation using a win-
dow of slightly larger extent than that used by the classifier.
This segmentation task is guided by top-down knowledge.
We learn offline from training data those segmentations that
are consistent with true positives. We then prune away those
hypotheses with bad segmentations. We show this strat-
egy leads to significant improvements (10-20%) over estab-
lished approaches such as ViolaJones and DalalTriggs on a
variety of benchmark datasets including the PASCAL chal-
lenge, LabelMe, and the INRIAPerson dataset.

1. Introduction
One of the open issues in object recognition is the role

of segmentation. Several issues remain unclear. Can one
quantitatively demonstrate that segmentation improves de-
tection performance? If so, how does one computationally
detect/segment in an efficient manner?

We address these issues with a simple but surprisingly
effective hypothesize-and-test framework. We leverage the
successful work on sliding-window pattern-recognition de-
tectors. We use these as attention mechanisms that propose
many hundreds of object hypotheses per image. By com-
puting a local figure-ground segmentation at hypothesized
detections, we show one can prune away many false hy-
potheses. We quantitatively show this strategy significantly
boosts the performance of the baseline sliding-windows de-

Figure 1. Window-based classifiers are the state-of-the-art for ob-
ject detection across many categories. These approaches typically
compute some linear function of edge-like features (such as thresh-
olded Haar wavelets or oriented gradients). Such approaches,
though quite successful, can suffer from a lack of explicit encod-
ing of object structure. We show typical false positives above. On
the left, the face detector becomes confused by edges in foliage.
The pedestrian detector (top) mistakens strong vertical edges for
a person, while the car detector (right) likes to fire on strong hor-
izontal edges. We propose to use figure-ground segmentation cues
in conjunction with edge-based window classifiers. For example,
one can remove the last false-positive person by explicitly reason-
ing about what pixels belong to the object versus the background.

tectors.
In this work, we use well-known state-of-the-art base-

lines – ViolaJones [16] for finding faces and DalalTriggs [3]
for finding pedestrians and cars. Such window-based clas-
sifiers perform quite well in practice - the DalalTriggs de-
tector yields the top score across many object classes (in-
cluding people and cars) from the PASCAL 2006 Visual
Object Challenge [4]. However, such “pattern-recognition”
approaches could be limited by their lack of encoding of
object shape/structure - one might find faces in trees or mis-
take pillars for pedestrians (Fig. 1).

To address these limitations, we use a verification stage
that computes a local figure-ground segmentation around
the candidate detection window. Though image segmen-

1

Part I: Pictorial Structures

• Introduced by Fischler and Elschlager in 1973

• Part-based models:

- Each part represents local visual properties

- “Springs” capture spatial relationships

Matching model to image involves 

joint optimization of part locations

“stretch and fit”

VS

fw(x) = max
z

w · Φ(x, z)fw(x) = w · Φ(x)



Latent SVMs

Assume we are given positive and 
negative training windows {xi}

fw(x) = max
z

w · Φ(x, z)

w∗ = arg min
w

λ||w||2+
∑

i∈pos

max(0, 1− fw(xi)) +
∑

i∈neg

max(0, 1 + fw(xi))

...

If f() is linear in w, this is a standard SVM (convex)
If f() is arbitrary, this (in general) is not convex 

If f() is convex in w, the training objective is ‘semi-convex’

(Instance of LeCun’s Energy Based Model)



Latent SVMs

Assume we are given positive and 
negative training windows {xi}

fw(x) = max
z

w · Φ(x, z)

Optimization is convex if we fix the zi for positive xi

...
∑

i∈pos

max(0, 1− w · φ(xi, zi)) +
∑

i∈neg

max(0, 1 + fw(xi))

ŵ = arg min
w

λ||w||2+

(ie, if we know part locations on positives)



Train with coordinate 
descent

1) Given w,  for each positive xi find zi that maximizes 
w · Φ(xi, zi)

2) Given positive zi, find w that optimizes convex 
objective

It can be show that this reduces the overall (nonconvex) 
objective on each iteration so we converge to a local 

minimum.

(optimize location of parts on positives)



Root filter initialization

•We select the aspect and size by a heuristic tuned on 
2006 data (use most common aspect and smallest area > 80% of training 
bounding boxes)

•Train a root filter with SVM-light:  use non-truncated 
positives (warped to fixed aspect & size) and random 
negatives



Root filter refinement
•For each positive training example, estimate a 
latent box that overlaps original box > 50%

•Automatically adjust bounding boxes with a LSVM

‘Tightens’ head weights



Part filter initialization
•Look for regions in root filter with lots of 
energy - part filter initialized to subwindow 
doubled in resolution

•Spatial model allows for a bounded offset 
from original anchor point - quadratic 
deformation cost initialized to weak gaussian



Model update
•Update each positive with best-scoring                
with >50% overlap of original box              

•Collect negative              `s by finding margin 
violations on negative images

•Use              `s to train a new detector (w) with 
SVM-light (Joachims) 

•Repeat update 10 times

Φ(xi, zi)

Φ(xi, zi)

Φ(xi, zi)

Tried online updates; couldn’t get it to work (Yan?)



Component analysis
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PASCAL Person2006

•Factor of 2 improvement over ’06 winner - DalalTriggs (.16)
•Adjustment of b.box helps rigid template  - blue
•Parts help - green
•Multiscale (parts + root together) helps - cyan
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A look back

Training part-based models with classification 
machinery helps (cause of implicit bg model?)

Good classification <=> good object detection ?

Oxford’s results suggest so, but....



Classification vs Obj. Detection
3.5 Overview of Results 27
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Fig. 3.6. The performance of selected detectors on the INRIA static (left) and static+moving
(right) person data sets. For both of the data sets, the plots show the substantial overall gains
obtained by using HOG features rather than other state-of-the-art descriptors. (a) Compares
static HOG descriptors with other state of the art descriptors on INRIA static person data set.
(b) Compares combined the static and motion HOG, the static HOG and the wavelet detectors
on the combined INRIA static and moving person data set.

[2001] but also includes both 1st and 2nd-order derivative filters at 45◦ interval and the corre-
sponding 2nd derivative xy filter. It yields AP of 0.53. Shape contexts based on edges (E-ShapeC)
perform considerably worse with an AP of 0.25. However, Chapter 4 will show that generalised
shape contexts [Mori and Malik 2003], which like standard shape contexts compute circular
blocks with cells shaped over a log-polar grid, but which use both image gradients and orienta-
tion histograms as in R-HOG, give similar performance. This highlights the fact that orientation
histograms are very effective at capturing the information needed for object recognition.

For the video sequences we compare our combined static and motion HOG, static HOG, and
Haar wavelet detectors. The detectors were trained and tested on training and test portions of
the combined INRIA static and moving person data set. Details on how the descriptors and the
data sets were combined are presented in Chapter 6. Figure 3.6(b) summarises the results. The
HOG-based detectors again significantly outperform the wavelet based one, but surprisingly
the combined static and motion HOG detector does not seem to offer a significant advantage
over the static HOG one: The static detector gives an AP of 0.553 compared to 0.527 for the
motion detector. These results are surprising and disappointing because Sect. 6.5.2, where we
used DET curves (c.f . Sect. B.1) for evaluations, shows that for exactly the same data set, the
individual window classifier for the motion detector gives significantly better performance than
the static HOG window classifier with false positive rates about one order of magnitude lower
than those for the static HOG classifier. We are not sure what is causing this anomaly and are
currently investigating it. It seems to be linked to the threshold used for truncating the scores
in the mean shift fusion stage (during non-maximum suppression) of the combined detector.
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obtained by using HOG features rather than other state-of-the-art descriptors. (a) Compares
static HOG descriptors with other state of the art descriptors on INRIA static person data set.
(b) Compares combined the static and motion HOG, the static HOG and the wavelet detectors
on the combined INRIA static and moving person data set.

[2001] but also includes both 1st and 2nd-order derivative filters at 45◦ interval and the corre-
sponding 2nd derivative xy filter. It yields AP of 0.53. Shape contexts based on edges (E-ShapeC)
perform considerably worse with an AP of 0.25. However, Chapter 4 will show that generalised
shape contexts [Mori and Malik 2003], which like standard shape contexts compute circular
blocks with cells shaped over a log-polar grid, but which use both image gradients and orienta-
tion histograms as in R-HOG, give similar performance. This highlights the fact that orientation
histograms are very effective at capturing the information needed for object recognition.

For the video sequences we compare our combined static and motion HOG, static HOG, and
Haar wavelet detectors. The detectors were trained and tested on training and test portions of
the combined INRIA static and moving person data set. Details on how the descriptors and the
data sets were combined are presented in Chapter 6. Figure 3.6(b) summarises the results. The
HOG-based detectors again significantly outperform the wavelet based one, but surprisingly
the combined static and motion HOG detector does not seem to offer a significant advantage
over the static HOG one: The static detector gives an AP of 0.553 compared to 0.527 for the
motion detector. These results are surprising and disappointing because Sect. 6.5.2, where we
used DET curves (c.f . Sect. B.1) for evaluations, shows that for exactly the same data set, the
individual window classifier for the motion detector gives significantly better performance than
the static HOG window classifier with false positive rates about one order of magnitude lower
than those for the static HOG classifier. We are not sure what is causing this anomaly and are
currently investigating it. It seems to be linked to the threshold used for truncating the scores
in the mean shift fusion stage (during non-maximum suppression) of the combined detector.

84 6 Oriented Histograms of Flow and Appearance for Detecting People in Videos
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Fig. 6.7. An overview of the performance of our various motion detectors. All detectors are
trained on Motion Training Set 1 combined with the Static Test Set with flow set to zero. They
are tested respectively on: (a) the Motion Test Set 1; (b) the Motion Test Set 2; (c) the Motion
Test Set 1 plus the Static Test Set; (d) the Motion Test Set 2 plus the Static Test Set.

with static image flow set to zero). The results are shown in Fig. 6.7(c–d). Diluting the fraction
of moving examples naturally reduces the advantage of the combined methods relative to the
static ones, but the relative ranking of the methods remains unchanged. Somewhat surprisingly,
Table 6.1 shows that when used on entirely static images for which there is no flow, the best
combined detectors do marginally better the best static one. The images here are from the Static
Test Set, with the detectors trained on Motion Training Set 1 plus the Static Training Set as before.

Figure 6.8 shows some sample detections after non-maximum suppression of the combined
detector (R-HOG + IMHmd trained on Motion Training Set 1 + Static) on images from Motion
Test Set 2. Set 2 contains challenging images taken from different films from the training images.
Here there are shots of people in Indian costume, some dance sequences, and people in crowds
that are different from anything seen in the training images.

False positives per window fraction of detections that 
overlaps ground truth

Dalal’s thesis (p27): good classification 
does not imply good detection



Why not score FPPW?
1) Score is tied to resolution of scan
    (not valid for segmentation/pyramid-based search)

2) We can directly score the task we care about
(DAF: Can we use it to avoid hitting pedestrians?)

2) We need to account for non-max suppression (non-
trivial: “auto-correlation” of detector response should be 
smooth and peaky)



Conclusion

-Histograms-of-gradient features

-Discriminatively-trained 

 

-Multi-scale

Image pyramid HOG feature pyramid

What makes our part model work?


